An Introduction to Distributions and Foliations

نویسنده

  • Samuel Otten
چکیده

In smooth manifold theory, the notion of a tangent space makes it possible for differentiation to take place on an abstract manifold. In this paper, the notion of a distribution will be presented which makes it possible for integration to take place on an abstract manifold. The first section introduces terminology and builds intuition via an analogy to the concept of integral curves. The second section presents the Frobenius theorem–one of the foundational results in smooth manifold theory. The concluding section leaves the reader with foliations and a brief look at their connection to the Frobenius theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lightlike foliations of semi-Riemannian manifolds1

Using screen distributions and lightlike transversal vector bundles we develop a theory of degenerate foliations of semiRiemannian manifolds. We build lightlike foliations of a semiRiemannian manifold by suspension of a group homomorphism φ : π1(B, x0) → Isom(T ). We compute the basic cohomology groups of the flow determined by a lightlike Killing vector field on a complete semi-Riemannian mani...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Geometric description of lightlike foliations by an observer in general relativity

We introduce new concepts and properties of lightlike distributions and foliations (of dimension and co-dimension 1) in a space-time manifold of dimension n, from a purely geometric point of view. Given an observer and a lightlike distribution Ω of dimension or co-dimension 1, its lightlike direction is broken down into two vector fields: a timelike vector field U representing the observer and ...

متن کامل

Lectures on Partial Hyperbolicity and Stable Ergodicity

Weak integrability of the central foliation 56 6. Intermediate Foliations 58 6.1. Non-integrability of intermediate distributions 58 6.2. Invariant families of local manifolds 59 6.3. Insufficient smoothness of intermediate foliations 64 7. Absolute Continuity 69 7.1. The holonomy map 69 7.2. Absolute continuity of local manifolds 75

متن کامل

Transversely Hessian foliations and information geometry

A family of probability distributions parametrized by an open domain Λ in Rn defines the Fisher information matrix on this domain which is positive semi-definite. In information geometry the standard assumption has been that the Fisher information matrix is positive definite defining in this way a Riemannian metric on Λ. If we replace the "positive definite" assumption by "0-deformable" conditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008